maths
posted by tuhituhi on .
prove that : 2^n + 2^n1 / 2^n+1  2^n = 3/2

( 2 ^ n + 2 ^ ( n  1 ) ) / ( 2 ^ ( n + 1 )  2 ^ n ) Multiply both sides by ( 2 ^ ( n + 1 )  2 ^ n )
________________________________________
( 2 ^ n ) * 2 ^ ( n + 1 ) = 2 ^ ( 2 n + 1 )
2 ^ ( n  1 ) * (2 ^ ( n + 1 ) ) = 2 ^ 2 n
2 ^ ( 2 n + 1 ) + 2 ^ 2 n = 3 * 4 ^ n
2 ^ ( 2 n ) * 2 ^ ( 2 n ) = ( 2 ^ ( 2 n ) ) ^ 2 = 2 ^ ( 4 n )
________________________________________
( 2 ^ n + 2 ^ ( n  1 ) ) / ( 2 ^ ( n + 1 )  2 ^ n ) =
2 ^ ( 2 n + 1 ) + 2 ^ 2 n / ( 2 ^ ( 2 n ) ) ^ 2 =
3 * 4 ^ n / ( 2 * 4 ^ n ) = 3 / 2