Wednesday

October 1, 2014

October 1, 2014

Posted by **Sue** on Saturday, March 2, 2013 at 2:43pm.

- statistics -
**MathGuru**, Saturday, March 2, 2013 at 5:34pmUse z-scores.

Formula for the first part:

z = (x - mean)/sd

With your data:

z = (485 - 475)/10

I'll let you finish the calculation.

Once you have the z-score, check a z-table for the probability. (Remember the problem is asking "weight exceeding" 485 grams.)

Formula for the second part:

z = (x - mean)/(sd/√n)

With your data:

z = (480 - 475)/(10/√16)

I'll let you finish the calculation.

Once you have the z-score, check a z-table for the probability. (Remember the problem is asking "mean weight... will exceed" 480 grams.)

I hope this helps and will get you started.

**Answer this Question**

**Related Questions**

Algebra - The weights of boxes of candies produced in a factory are normally ...

Statistics - The amount of fill(weight of contents)put into a glass jar of ...

Statistics - Reginald Brown an inspector from the department of weights and ...

math - Four boxes of cereal are to be selected at random from a continuous ...

math - The weight of lolly pops in a box is normally distributed with a mean of ...

statistics - Can you please tell me how to solve for the following? Pedro took ...

Statistics - The weights of the fish in a certain lake are normally distributed ...

Statistics/Probability - A factory produces a particular type of electronic ...

Statistics - Given that x is a normally distributed random variable with a mean ...

statistics - A population is normally distributed with a mean of 40 and a ...