Sunday

July 24, 2016
Posted by **Lee** on Tuesday, February 19, 2013 at 9:57am.

1. Graph x2 + y2 = 9. What are its lines of symmetry?

Every line through the center is a line of symmetry.

The y-axis and the x-axis are lines of symmetry.( my choice)

Every line through the center is a line of symmetry.

The y-axis and the x-axis are lines of symmetry.

2. Graph x2 + 9y2 = 25. What are the domain and range?

Domain: 每3 ≒ x ≒ 3

Range: 每3 ≒ y ≒ 3

Domain: 每5 ≒ x ≒ 5

Range: 每5 ≒ y ≒ 5 (my choice)

Domain: 每5 ≒ x ≒ 5

Range: 每1.67 ≒ y ≒ 1.67

Domain: 每1.67 ≒ x ≒ 1.67

Range: 每5 ≒ y ≒ 5

3. Graph x2 每 y2 = 16. What are its lines of symmetry?

It has four lines of symmetry, the x-axis, the y-axis, y = x, and y = 每x.

Every line through the center is a line of symmetry.

It has four lines of symmetry, the x-axis, the y-axis, y = x, and y = 每x.

It has two lines of symmetry, the x-axis and the y-axis. ( my choice)

4. Identify the center and intercepts of the conic section. Then find the domain and range.

The center of the ellipse is (0, 0).

The x-intercepts are (0, 5) and (0, 每5).

The y-intercepts are (每3, 0) and (3, 0).

The domain is {x | 每3 ≒ x ≒ 3}.

The range is {y { 每5 ≒ y ≒ 5}.

The center of the ellipse is (0, 0).

The x-intercepts are (每3, 0) and (3, 0).

The y-intercepts are (0, 5) and (0, 每5).

The domain is {x | 每3 ≒ x ≒ 3}.

The range is {y { 每5 ≒ y ≒ 5}.( my choice)

The center of the ellipse is (0, 0).

The x-intercepts are (0, 5) and (0, 每5).

The y-intercepts are (每3, 0) and (3, 0).

The domain is {y { 每5 ≒ y ≒ 5}.

The range is {x | 每3 ≒ x ≒ 3}.

The center of the ellipse is (0, 0).

The x-intercepts are (0, 5) and (0, 每5).

The y-intercepts are (每3, 0) and (3, 0).

The domain is {y { 每5 ≒ y ≒ 5}.

The range is {x | 每3 ≒ x ≒ 3}.

5. Identify the center and intercepts of the conic section. Then find the domain and range.

The center of the hyberbola is (0, 0).

The y-intercepts are (0, 5) and (0, 每5).

The domain is all real numbers.

The range is {y | y ≡ 每5 or y ≒ 5}.

The center of the hyberbola is (0, 0).

The x-intercepts are (0, 5) and (0, 每5).

The domain is all real numbers.

The range is {y | y ≒ 每5 or y ≡ 5}.

The center of the hyberbola is (0, 0).

The y-intercepts are (0, 5) and (0, 每5).

The domain is all real numbers.

The range is {y | y ≒ 每5 or y ≡ 5}.(my choice)

The center of the hyberbola is (0, 0).

The x-intercepts are (0, 5) and (0, 每5).

The domain is all real numbers.

The range is {x | x ≒ 每5 or x ≡ 5}.

- algebra -
**Steve**, Tuesday, February 19, 2013 at 11:46am#1. Every line through the center is an axis of symmetry. The x- and y- axes are just two of them.

#2. Not sure what the scrambled symbols are, but

domain is -5 <= x <= 5

range is -5/3 <= y <= 5/3

#3. Since + came out ok, I assume the equation is

x^2 - y^2 = 16

As you say, x- and y-axes are the axes of symmetry

#4. If your choice is correct, the equation of the ellipse must have been

x^2/9 + y^2/25 = 1

#5. If your choice is correct, the equation of the hyperbola must have been

y^2/25 - x^2 = 1 - algebra -
**Anonymous**, Tuesday, February 19, 2013 at 11:53am12m to the 3rd power plus 12m to the 2nd power plus 0m divided by 3m to the 2ns power divided by 3m to the 2nd power

- algebra -
**Anonymous**, Tuesday, March 22, 2016 at 12:59pma.

c.

d.

b.

c. - algebra -
**Anonymous**, Wednesday, April 6, 2016 at 11:19pmThanks^^ 100% right