Posted by **Anonymous** on Friday, February 8, 2013 at 8:51am.

A catapult on a cliff launches a large round rock towards a ship on the ocean below. The rock leaves the catapult from a height H = 35.0 m above sea level, directed at an angle theta = 45.9° above the horizontal, and with a speed v = 32.3 m/s. Assuming that air friction can be neglected, calculate the horizontal distance D traveled by the projectile.

## Answer This Question

## Related Questions

- physics - A catapult on a cliff launches a large round rock towards a ship on ...
- Physics - A catapult on a cliff launches a large round rock towards a ship on ...
- Physics - A catapult on a cliff launches a large round rock towards a ship on ...
- phsics - A catapult on a cliff launches a large round rock towards a ship on the...
- Physics - A catapult on a cliff launches a large round rock towards a ship on ...
- phsics - A catapult on a cliff launches a large round rock towards a ship on the...
- physics - A catapult on a cliff launches a large round rock towards a ship on ...
- Physics - A catapult on a cliff launches a large round rock towards a ship on ...
- physics - A catapult on a cliff launches a large round rock towards a ship on ...
- Physics - A catapult on a cliff launches a large round rock towards a ship on ...

More Related Questions