Thursday

April 24, 2014

April 24, 2014

Posted by **Erica** on Thursday, January 31, 2013 at 11:46am.

a) Show that the constant function y1(t)=0 is a solution.

b)Show that there are infinitely many other functions that satisfy the differential equation, that agree with this solution when t<=0, but that are nonzero when t>0 [Hint: you need to define these functions using language like " y(t)=...when t<=0 and y(t)=...when t>0 and "]

c) Why doesn't this example contradict the Uniqueness Theorem?

I'm trying to do part b and after I separated and integrated I got

ln|y|=(-1/t)+C

I'm not sure if I can get C with the solution they gave in part a)y1(t)=0.

Anyways, I get y(t)=Ce^-(1/t). I don't know where to go from there.

No one has answered this question yet.

- Differential Equations -
**Damon**, Thursday, January 31, 2013 at 4:34pmscroll down through this:

http://hyperphysics.phy-astr.gsu.edu/hbase/diff.html

**Related Questions**

Differential Equations - Consider the differential equation: dy/dt=y/t^2 a) Show...

Differential Equations - Consider the differential equation: dy/dt=y/t^2 a) Show...

Differential Equations - Find the general solution of the differential equation ...

calculus-differential equation - Consider the differential equation: (du/dt)=-u^...

Differential Equations - a) Sketch the phase line for the differential equation ...

differential equations - Consider the 2nd order differential equation: x''(t)=-...

Differential Equations - a) Sketch the phase line for the differential equation ...

Differential Equations - Solve the seperable differential equation for U. du/dt...

calculus - Can you give me a good website on the topic, slope fields and ...

math (differential equation) - show that y sub n=cos(ncos^-1(x)) satisfies the ...