Differential Equations
posted by Erica on .
Consider the differential equation: dy/dt=y/t^2
a) Show that the constant function y1(t)=0 is a solution.
b)Show that there are infinitely many other functions that satisfy the differential equation, that agree with this solution when t<=0, but that are nonzero when t>0 [Hint: you need to define these functions using language like " y(t)=...when t<=0 and y(t)=...when t>0 and "]
c) Why doesn't this example contradict the Uniqueness Theorem?
I'm trying to do part b and after I separated and integrated I got
lny=(1/t)+C
I'm not sure if I can get C with the solution they gave in part a)y1(t)=0.
Anyways, I get y(t)=Ce^(1/t). I don't know where to go from there.
No one has answered this question yet.

scroll down through this:
http://hyperphysics.phyastr.gsu.edu/hbase/diff.html