Posted by **Crystal** on Tuesday, December 11, 2012 at 7:47pm.

For f(x) = 1/2sin2(x-90°)

What are the transformations?

The 1/2 means a vertical compression by a factor of 1/2

And (x-90°) means there's a phase shift right 90°

But what does the 2 mean? The one immediately left to the (x-90°).

Does it mean a horizontal compression by factor of 1/2?

Because when I draw the graph for it going by what I have above, I get something different from what I calculate the main 5 points as :

(x,y) -> (2x+90°, 1/2y)

(0,0) -> (90°, 0)

(90,1)-> (270, 1/2) ... When I draw the graph, the point I get is (270, 0).

- Math -
**Reiny**, Tuesday, December 11, 2012 at 9:01pm
The 2 in

f(x) = (1/2) sin 2(x-90°) affects the frequency

for sin k(....), the period of the sine curve is 360°/k

or we can say that there are k complete curves from 0 to 360

So the 2 causes a compression factor of 2 of the standard sine curve.

that is, for f(x) = (1/2) sin (x-90°) there would be ONE complete sine curve from 0 to 360 , while for

f(x) = (1/2) sin 2(x-90°) there will be TWO complete sine curves from 0 to 360

So, let's say we pick x = 30·

we have

f(30°) = (1/2) sin 2(30-90°)

= (1/2) sin 2(-60°)

= (1/2) sin (-120°)

= (1/2)(-√3/2) = -√3/4 or appr -.433

etc

## Answer this Question

## Related Questions

- algebra 2 - What are two different transformations that will transform f(x)=5x+3...
- math - The sinusoid y=3cos(x+3)-2 has which of the following? a. phase shift of ...
- Pre-calculus - State the period, phase shift, and vertical shift of the function...
- maths - I have y=5sin(4x-pie/2). I need too find phase shift. I know c/b is ...
- precalculus - How do I find the vertical/horizontal compression/stretch? For the...
- Math Finals - URGENT - Transformations - when you have "y = 1/2sin2x". . . Does ...
- Trigonometry - Write the equation of a sine wave (also called sine curve) given...
- Calculus. Please!! i need help so bad!!! - 1. Graph y =sec(1/2O-2pi)– 3. the O ...
- Trig/Math - f(x)=1/3sin(2/3x-π/4)+4 Find the amplitude, period, phase shift...
- Trig/Math - f(x)=1/3sin(2/3x-π/4)+4 Find the amplitude, period, phase shift...