# Trigonometry

posted by
**Erick** on
.

2. Choose the point that lies on the curve r = 2 – 3 sin θ.

A. (-5, 3π/2)

B. (–2, π)

C. (1, π/2)

D. (5, π/2

3. Which of the following is not an approximate solution of x5 – 1 = 0?

A. 0.3090 – 0.9511i

B. 0.8090 + 0.5878i

C. 0.3090 + 0.9511i

D. –0.8090 + 0.5878i

5. Change -4√2 - 4√2i to trigonometric form.

A. 32 cis 135°

B. 8 cis 225°

C. 8 cis 45°

D. 32 cis 45°

6. Simplify (2 cis 100°)7.

A. 2 cis 700°

B. 128 cis 280°

C. 128 cis 340°

D. 2 cis 340°

8. Simplify 12(cos 52° + i sin 52°)/ 8(cos 128° + i sin 128°)

A. 3/2cis 152°

B. 3/2cis 76°

C. 3/2cis 180°

D. 3/2cis 284°

9. Simplify i 45.

A. –i

B. 1

C. i

D. –1

10. Given the rectangular-form point (–1, 4), which of the following is an approximate primary representation in polar form?

A. (4.12, 1.82)

B. −(4.12, 1.82)

C. (−4.12, −1.33)

D. (4.12, 4.96)

11. Simplify (√2 cis 47°)(3√8

A. 48 cis 223°

B. 12 cis 223°

C. 48 cis 136°

D. 12 cis 136°

12. Which of the following statements are true?

(i) r = 4 – 3 sin θ is the equation for a limaçon rotated 90°.

(ii) r = 3 cos 8θ is the equation for a rose curve with 8 petals.

(iii) rθ = 16 is the equation for a circle.

A. (ii) only

B. (i) only

C. (i) and (ii)

D. (i) and (iii)

13. Describe the rotation required to transform the graph of r = 4 − cos (θ − 30°) sin (θ − 30°) to the graph of r = 4 − cos θ sin θ.

A. 30° counterclockwise

B. 60° clockwise

C. 60° counterclockwise

D. 30° clockwise

14. Simplify (4 − 9i ) − (2 − 4i ).

A. 2 − 13i

B. 2 − 5i

C. −5 + 2i

D. 2 + 13i

15. Find the absolute value of –2 + 6i.

A. 4

B. 4√2

C. 2√2

D. 2√10