Posted by **sara thunderbird** on Sunday, November 25, 2012 at 11:14pm.

1. ((∀x-Fx v ∀xGx) v -(∀xKx → -∃y∀z∃w-Dyzw)) & ((∀xFx & ∀x-Gx) v (∃xKx → ∀y∃z∀wDyzw))

├ ∀x(((Fx → Gx) → (Kx → ∀y∃z∀wDyzw)) & ((∃y∀z∃w-Dyzw → -Kx) → (-Gx → -Fx)))

2. -∃x(Px → ∀yGxy) v ∃x(Lx & Sx), -∀x(-Lx v –Sx) → (∀x∃y-Gxy→∃x-Px)

├ - ( ((∃x-Px v ∃x∀yGxy) → -∀x(Lx → -Sx)) → ( ∃x (Sx & Lx) & ∀x(Px & ∃y-Gxy) ) )

1. - ((H→ (-L→-P)) → - ( - (P→L) v H)) ├ (P→ (-L→ -H)) & (-P v (-H v L))

2. ((R v G) & -(G & R)) C, C ((R v G) & -(G & R))

├ (G ((R v C) & -(C& R))) & (((R v C) & -(C & R)) G)

3. –((J v –F) → (R&S)) v B, (R&S) v (-B v (F & -J)) ├ - ( (-B((-J-F)&(R-S))) ((FJ)& - ((-Rv-S) -B)) )

## Answer This Question

## Related Questions

- Math - In the questions below P(x,y) means “x and y are real numbers such that x...
- Discrete Math - So, the question I got was: ∀x,(x =/= 0) → (∃!...
- Introduction to logic - I need help on Quantifier logic problems? Using the ...
- Discrete math - TRUE OR FALSE ? Justify your answer. a. There exist real numbers...
- math(Discrete) - Determine whether the statement ∀x ∈ Z, ∃y, z...
- Algebra/Number Theory - Consider the set of all functions f:ℚ→ℚ...
- Symbolic Logic - Even if you know only some of them please help! 1. Give a ...
- Logic - Even if you know only some of them please help! 1. Give a proof of the ...
- Chemistry - I think these I know how to do ....just want someone to check..still...
- maths - A sequence is defined by un = 2×(−0.5)n + 3 (n = 1,2,3, . . .). ...

More Related Questions