Posted by **Anonymous** on Sunday, November 18, 2012 at 12:48pm.

there are a 1000 tickets. Price for children's ticket is 6.5. Adult tickets are 9.5. total tickets sales are 8444. how many adult and children tickets are sold. Using binomials to solve.

x+y = 16 (1 child + 1 Adult = 16)

6.5X + 9.5Y = 8444

6.5(16-y) + 9.5Y = 8444

What am I doing wrong?

- Algebra -
**Steve**, Sunday, November 18, 2012 at 2:35pm
do not mix up the quantity with the prices. We know there are 1000 tickets, so

x+y = 1000

now add up the prices, remembering that x and y are the number of tickets:

6.5x + 9.5y = 8444

you used x,y for prices in one place, number of tickets in the other. Using the two equations I showed above,

6.5x + 9.5(1000-x) = 8444

3x = 1056

x = 352

so, y = 1000-x = 648

## Answer This Question

## Related Questions

- precalculus algebra - Diane is a manager at a small movie theater. On Wednesday...
- Math - how would you solve this problem? Adult tickets to a play cost $12 and ...
- asc - Miguel is selling tickets to a barbecue. Adult tickets cost 6.00 and ...
- MTED402 - THERE WERE 390 ADULT AND CHILDREN TICKETS THAT WERE SOLD AT A PLAY. ...
- math - Children and adult tickets were sold for a local play. The children and ...
- Math 70 - At a county fair, an adult ticket sold for $6.00, a senior citizen’s ...
- Math - A ticket booth sold 446 tickets and collected $3,188 in ticket sales. ...
- Algebra - On the opening night of a play at a local theatre, 895 tickets were ...
- Math - Exactly 120 tickets were sold for a concert. The tickets cost $12 each ...
- Algebra - The school that Trevon goes to is selling tickets to a choral ...

More Related Questions