calculus
posted by Navroz on .
a function has a local maximum at x=2 and x=6 and a local minimum at x=1. how do u find the concavity of this function and point of inflection??
***the only given info is the max and min points

Imagine what is happening from (infinity < x < infinity)
1). from infinity to x = 2, the graph is going up, then reaches a maximum at x = 2
2). From x = 2 to x = 1, the graph is going down to the minimum at x = 1
3). From x = 1 to x = 6, the graph goes up again to its maximum at x = 6
4). From x = 6 to +infinity, the graph must go down again.
So the graph will kind of look like two hills with one inflection point between x = 2 and x = 1, and another between x = 1 and x = 6
The function is concave down from  infinity to inflection point 1; concave up from inflection point1 to inflection point 2, and concave down from inflection point 2 to infinity.
The inflection points are found by solving the equation f''(x) = 0