Post a New Question


posted by .

A solid ball rolls along a frictionless plane. It is 4 kilograms and is moving at a velocity of 15 meters per second. If it has a completely elastic collision and transfers all of its momentum to a stationary solid ball of 14 kilograms, what will be the velocity of the second ball?

  • physics -

    The momentum of the first ball is 4*15 kg m/s

    This is equal to the momentum of the 14 kg ball after it starts moving:

    4*15 = 14*v

    where v is the velocity of the second ball

  • physics -

    I suspect your teacher did not realize what he wrote: commpletely elastic, and transfers all of its momentum....

    Rotational energy, and rotational momentum being conserved is an issue here, I think. Nothing on the size of either ball is my guess is your teacher MEANT to say, the collision in translational motion was elastic, and all translational momentum was transfered. Now in reality, it would be a feat to do this with balls of different mass, as any pool player can attest, but they don't play on a frictionaless table, where balls theoritically move without rolling.

    So considering translational motion only.

    KE before= KE after
    1/2 4 * 15^2=1/2 14 vf^2 give you the velocity of the second ball.

    Now if you consider momentum
    momentum before=momentum after
    Notice it is a different answer than in the KE solution.

    Thus, as pool players recognize, it is not possible. Maybe your teacher had something in mind here, but it escapes me.

Answer This Question

First Name:
School Subject:

Related Questions

More Related Questions

Post a New Question