chemistry
posted by Brunette on .
Values of the rate constant for the decomposition of N2O5 at four different temperatures are as follows:
T(K) k(s^1)
658....2.14*10^5
673....3.23*10^5
688....4.81*10^5
703....7.03*10^5
The activation energy is 1.02*10^2 kJ/mol. Calculate the value of the rate constant at 300 K

Can't you use the Arrhenius equation?
Use two T values with corresponding k values. One T will be 300 and k at that T will be the unknown. 
I keep trying that and it is saying that I have the wrong answer. here is my work:
slope: 1.19*10^4 yintercept= 30.439
Ea: (1.19*10^4 K) *(8.314J/moK)= 9.89*10^4 J/mol
A= e^30.439= 1.65*10^13
(1.65*10^13) e^(9.89*10^4J/mol/8.314*300 K)= 9.98*10^5
I keep getting different answers, and each time they are saying it is wrong. Can you tell me where I am going wrong? And am I supposed to convert the Ea into joules/mole? 
convert Ea into kj