Wednesday

April 1, 2015

April 1, 2015

Posted by **Jerry** on Wednesday, October 10, 2012 at 11:12am.

- Calculus II -
**Steve**, Wednesday, October 10, 2012 at 11:39amLet the center of the tank be at (0,0)

when the water level is at y, the radius of the water surface is

r^2 = 25-y^2

Work is ∫F(y) dy

F(y) is the weight of the water. So, since each slice of water in the tank is raised 21+y feet, and water weighs 62.4 lbs/ft^3,

W(y) = ∫[-5,5] 62.4 π (25-y^2) (21+y) dy

= 218400π

**Answer this Question**

**Related Questions**

math - A fish tank 1 feet x 1 1/2 feet x 1/2 feet is carefully used to fill a ...

math - A cylindrical tank is lying horizontally on the ground, its diameter is ...

AP calculus - The base of a cone-shaped tank is a circle of radius 5 feet, and ...

Calculus - A cylindrical water tank has a radius of 2 feet and a height of 6.0 ...

Calculus 2 - Calculus 2. Tom and Mike have a bet as to who will do the most work...

Calculus (Definite Integrals - Work) - Recall that work is defined to be force ...

Calculus - A spherical oil tank with a radius of 10 feet is half full of oil ...

calculus - A conical water tank with vertex down has a radius of 12 feet at the ...

Physics/Calculus - A spherical oil tank with a radius of 10 feet is half full of...

Calculus (math) - A conical water tank with vertex down has a radius of 12 feet ...