# Physics

posted by on .

Centrifuges are commonly used in biological laboratories for the isolation and maintenance of cell preparations. For cell separation, assume centrifugation conditions that are 1.00 x 103 rpm using an 8.16-cm-radius rotor. What is the radial acceleration of material in the centrifuge under these conditions? Express your answer as a multiple of g. Do not enter unit.

• Physics - ,

1.00 * 103 rpm is a unit of angular velocity.

a = w^2 * r, where a is radial acceleration, and w is angular velocity, and r is the radius

You need to express your answer as a multiple of g, which is in units of m/s^2

Convert w = 1.00 * 103 rpm to rps (rotations per minute to rotations per second)

convert r = 8.16 cm to m

plug these numbers into the equation to get the acceleration, divide by g (9.8 m/s^2) to get answer

• Physics - ,

In reply to Jennifer, her explanation is CLOSE to be correct. Instead of converting rpm to rps, convert it to rad/s and use that as the velocity. To do this, multiply the rpm by 2π and then divide by 60. Use that and the radius in the formula then divide by 9.8 and you got it!