Posted by kieran on Monday, October 1, 2012 at 10:31pm.
A closed box is to be rectangular solid with a square base. If the volume is 32in^3, determine the dimensions for which the surface area is minimum.

Calculus  Reiny, Monday, October 1, 2012 at 11:04pm
make a sketch
let the base be x by x, and the height be y
so x^2 y = 32
y = 32/x^2
SA = 2x^2 + 4xy
= 2x^2 + 4x(32/x^2)
= 2x^2 + 128/x
d(SA)/dx = 4x  128/x^2 = 0 for a min of SA
4x = 128/x^2
4x^3 = 128
x^3 = 32
x = 32^(1/3) or appr 3.175
y = 32/3.175^2
Well , what do you know, it happens to be a perfect cube.

Calculus  Anonymous, Friday, December 5, 2014 at 1:17am
60.48
Answer This Question
Related Questions
 calculus  A container company is tasked to make an opentop rectangular box ...
 Calculus  I actually have two questions: 4. An open box is to be made from a ...
 calculus  determine the dimensions of a rectangular solid (with a square base) ...
 Calculus  A closed box is to be a rectangular solid with a square base and ...
 Calculus  A cardboard box of 32in^3 volume with a square base and open top is ...
 Calculus  Q. An opentop box with a square base is to have a volume of 62.5 ...
 Math  We want to construct a closed rectangular box whose base has a length ...
 Calculus  A box with a square base and no top is to have a volume of 32 ft3. ...
 calculus  a. A closed cylindrical can is to hold 1000cm^3 of liquid. How should...
 Calculus  A rectangular box is to have a square base and a volume of 20 ft3. If...
More Related Questions