Posted by Paul on Wednesday, August 8, 2012 at 1:18pm.
This is a question from my textbook that does't have a solution and quite frankly I have no idea what to do. Any tips would be greatly appreciated.
Given the function f defined by f(x) = 9  x^2. Find the surface area bounded by the curve y = f(x), the x axis and the lines x = 2 and x = 0.
(a) Find the Riemann Sn sum algebraically, obtained by cutting the surface in n intervals of equal width and considering circumscribed rectangles
(b)Evaluate the surface area by finding lim n>infinite Sn
Thank you

Calculus  Reiny, Wednesday, August 8, 2012 at 2:14pm
for your first part of the question,
area = ∫(9x^2) dx from x=0 to x=2
= 9x (1/3)x^3  from 0 to 2
= 18  (1/3)(8)  0
= 18  8/3
= 46/3 units^2
The last time I taught Riemann's sums was about 50 years ago, so I will not attempt that part. 
Calculus  Paul, Wednesday, August 8, 2012 at 9:28pm
Thanks Reiny :)