Tuesday
March 28, 2017

Post a New Question

Posted by on .

The region in the first quadrant enclosed by the coordinates axes, the line x=pi, and the curve y= cos(cosx) is rotated about the x-axis. What is the volume of the solid generated.

  • Calculus AB...I really need help - ,

    v = ∫πy^2 dx [0,π]
    = ∫πcos^2(cosx) dx [0,π]

    that is not something you can evaluate using elementary functions. wolframalpha can do it, but it's done numerically, fer shure!

  • Calculus AB...I really need help - ,

    Using cos(2 x) = 2 cos^2(x) - 1 and the definition of the Bessel function of zeroth order:

    J0(x) = 1/pi Integral from zero to pi of cos[x cos(t)] dt,

    you find that the volume is given by:

    pi^2/2 [1 + J0(2)]

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question