maths
posted by jennie cribzon on .
the diagonals of a rhombus are 24 meter and 18 meter find the area,length of a side and perimeter?

recall these properties:
all sides of rhombus are equal.
the diagonals of rhombus are perpendicular (forms four 90 degree angles)
area of rhombus, if diagonals are given, can be calculated by
A = d1 * d2 /2
where d1 & d2 are the diagonal lengths
side of a rhombus, if diagonals are given, can be calculated by
s = sqrt(d1^2 + d2^2)
*note that this is just pythagorean theorem
applying these,
A = 24*18/2
A = 216 m^2
s = sqrt(24^2 + 18^2)
s = sqrt(900)
s = 30 m
P = 4*s
P = 4*30
P = 120 m
hope this helps~ :) 
A=D1*D2 LIKE D=24 AND 18. SO 24*18=432. THEREFORE AREA=432 . AND SIDE= SQRT D1*2+D2*2 . SO GIVEN D1 AND D2 =24 AND 18 =SQRT 24^2 +18^2= 576+324 =900 THEREFORE SIDE= sqrt900=30.