calculus
posted by carlton on .
Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the xaxis:
Y=sqrt(x+2), y=x,y=4

A rough sketch and some quick easy algebra shows that the curve intersects the lines at (2,2) and (14,4)
and the two straight lines intersect at (4,4)
so in 2 parts ....
V = π∫( x^2  (x+2) ) dx from 2 to 4 + π∫(16  (x+2))dx from 4 to 14
= π [(1/3)x^3  (1/2)x^2  2x] from 2 to 4 + π[ 16x  (1/2)x^2  2x] from 4 to 14
I will let you do the arithmetic