Saturday

July 4, 2015

July 4, 2015

Posted by **uijo** on Tuesday, May 1, 2012 at 3:51pm.

2. Suppose you spin the spinner once. Find the probability.

P(green) (1 point)

3. Suppose you spin the spinner once. Find the probability.

P(yellow or green) (1 point)

4. You mix the letters S, E, L, E, C, T, E, and D thoroughly. Without looking, you draw one letter. Find the probability of each event as a fraction, a decimal, and a percent.

P(not the letter I) (1 point)1; 1; 100%

0; 0; 0%

; 0.875; 87.5%

; 8; 8%

5. You mix the letters S, E, L, E, C, T, E, and D thoroughly. Without looking, you draw one letter. Find the probability of each event as a fraction, a decimal, and a percent.

P(not a consonant) (1 point), 0.375, 37.5%

, 0.6, 60%

, 0.625, 62.5%

, 0.5, 50%

6. Find the experimental probability of tossing tails.

coin toss results

H = heads T = tails

T H H H H T T T H H T H T H T

(1 point)

7. A Lights-A-Lot quality inspector examines a sample of 30 strings of lights and finds that 8 are defective.

a. What is the experimental probability that a string of lights is defective?

b. What is the best prediction of the number of defective strings of lights in a delivery of 400 strings of lights?

(1 point); 30 lights

; 107 lights

; 106.67 lights

; 8 lights

8. From a barrel of colored marbles, you randomly select 7 blue, 5 yellow, 8 red, 4 green, and 6 purple marbles.

Find the experimental probability of randomly selecting a marble that is NOT yellow. Write your answer in simplest form. (1 point)

9. From a barrel of colored marbles, you randomly select 7 blue, 5 yellow, 8 red, 4 green, and 6 purple marbles.

Find the experimental probability of randomly selecting a marble that is either green or purple. Write your answer in simplest form. (1 point)

10. Use the random number table to simulate flipping a coin. Suppose each even digit, including 0, represents heads and each odd digit represents tails.

23948 71477 12573 05954

65628 22310 09311 94864

41261 09943 34078 70481

34831 94515 41490 93312

Use the table to find P(heads). (1 point)

Solve problems 11–12 by making an organized list.

11. In a playground there are 47 wheels moving around with 19 students riding bicycles and tricycles. How many bicycles and tricycles are in motion? (1 point)13 bicycles, 8 tricycles

10 bicycles, 11 tricycles

10 bicycles, 9 tricycles

11 bicycles, 9 tricycles

12. Al’s Tire Shop replaces the tires on both cars and bicycles. On a particular afternoon, the shop replaced all the tires on 8 vehicles. In all, 18 tires were replaced. How many cars and bicycles did the shop work on that afternoon? (1 point)2 cars, 6 bicycles

3 cars, 6 bicycles

1 car, 7 bicycles

0 cars, 1 bicycles

13. A piglet weighs 7 lb at birth. It gains 1.5 lb per day. At this rate, how old will the piglet be when it reaches a weight triple its birth weight? (1 point)8 days old

10 days old

11 days old

21 days old

14. A standard number cube is tossed x times. How many different outcomes are possible? (1 point)6x

6x

6 + x

36x

15. A coin is tossed four times.What is the probability of getting tails four times in a row? (1 point)

16. A bag contains 4 blue marbles, 10 green marbles, and 11 yellow marbles. Twice you draw a marble and replace it. Find P(yellow, then blue). (1 point)

17. If the spinner is spun twice, what is the probability that the spinner will stop on a vowel then a consonant?

(1 point)

18. A drawer contains 5 red socks, 10 white socks, and 3 blue socks. Without looking, you draw out a sock and then draw out a second sock without returning the first sock. Find P(red, then blue). (1 point)

19. The diagram shows the contents of a jar of marbles. You select two marbles at random. One marble is drawn and not replaced. Then a second marble is drawn. What is the probability of selecting a blue marble and then a green marble?

(1 point)

20. How many different arrangements can be made with the letters from the word ORANGE? (1 point)120

720

46,656

12

For problems 21–22, write the number of permutations in factorial form. Then simplify.

21. G H I J K L (1 point)6!; 120

6!; 36

7!: 5,040

6!; 720

22. the number of different ways in which you and six friends can sit in your assigned seats when you go to a concert (1 point)7!; 720

6!; 720

8!; 40,320

7!; 5,040

23. A pizza shop offers the toppings shown below. How many different 5-topping pizzas can you make?

(1 point)120

6

21

7

- maTH -
**uijo**, Tuesday, May 1, 2012 at 3:59pmanybody plz help

- maTH - Homework Dump -
**Steve**, Tuesday, May 1, 2012 at 5:41pmFie on thee!

Murrain plague thee!

- maTH -
**steve**, Tuesday, May 15, 2012 at 10:17amhaha

- maTH -
**Anonymous**, Monday, May 21, 2012 at 10:06amdo your own test... this is cheating... I check the computer for cheating.

- maTH -
**Anonymous**, Monday, May 21, 2012 at 7:07pmill help u after i take the test

- maTH -
**Anonymous**, Friday, May 25, 2012 at 8:54pmHHSHSHSHHSHSHAHSJSHHAJ

- maTH -
**Anonymous**, Tuesday, March 5, 2013 at 7:49pmnumber 5 answer is 3\8 0.375 37.5