Post a New Question

trig

posted by on .

Prove that if Sinx=5/13 and Siny=12/13, where x and y angles in Q1, then Sin(x+y)=1

  • trig - ,

    sin ( x ) = 5 / 12

    cos ( x ) = + OR - sqrt [ 1 - sin ^ 2 ( x ) ]

    cos ( x ) = + OR - sqrt [ 1 - ( 5 / 1 3 ) ^ 2 ]

    cos ( x ) = + OR - sqrt ( 1 - 25 / 169 )

    cos ( x ) = + OR - sqrt ( 169 / 169 - 25 / 169 )

    cos ( x ) = + OR - sqrt ( 144 / 169 )

    cos ( x ) = + OR - 12 / 13

    In quaqdrant I cosine are positive so

    cos ( x ) = 12 / 13



    sin ( y ) = 12 / 13

    cos ( y ) = + OR - sqrt [ 1 - sin ^ 2 ( y ) ]

    cos ( y ) = + OR - sqrt [ 1 - ( 12 / 1 3 ) ^ 2 ]

    cos ( y ) = + OR - sqrt ( 1 - 144 / 169 )

    cos ( y ) = + OR - sqrt ( 169 / 169 - 144 / 169 )

    cos ( y ) = + OR - sqrt ( 25 / 169 )

    cos ( y ) = + OR - 5 / 13

    In quaqdrant I cosine are positive so

    cos ( y ) = 5 / 13


    sin ( x + y ) = sin ( x ) * cos ( y ) + cos ( x ) * sin ( y )

    sin ( x + y ) = ( 5 / 13 ) * ( 5 / 13 ) + ( 12 / 13 ) * ( 12 / 13 )

    sin ( x + y ) = 25 / 169 + 144 / 169

    sin ( x + y ) = 169 / 169 = 1

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question