Calculus
posted by Jesse Stone .
Find f'(x) if f(x)= Logx(x^25x+6)
NOTE:
that logx is a sub x

let y = log_{x} (x^2  5x + 6)
x^y = x^2  5x + 6
ln both sides
ln (x^y) = ln(x^2  5x + 6)
y lnx = ln(x^2  5x + 6)
differentiate implicityly
y(1/x) + (lnx) dy/dx = (2x5)/(x^25x+6)
dy/dx = ((2x5)/(x^25x+6)  y/x)/lnx