College Algebra
posted by Sunny on .
Here is the whole question... I have figured most of it out but I need help with part (b)(f) and (g)... Maybe you also check the work I have already done
Given the following function, find:
(a) vertex, (b) axis of symmetry, (c) intercepts, (d) domain, (e) range,
(f) intervals where the function is increasing,
(g) intervals where the function is decreasing, and
f(x)=x^2+2x+3
here's my work
y=x^2+2x+3
y=1(x^22x+1)1(3)(1)(0+1)
y=1(x^22x+1)1(3)(1)(1)
y=1(x1)^21(3)(1)(1)
y=1(x1)^2+3(1)(1)
y=1(x1)^2+3+1
y=1(x1)^2+4
y=a(xh)^2+k
a=1 k=4 h=1
Vetex=(1,4)
axis of symmetry=
(0)=x^2+2x+3
x^2+2x+3=0
x^22x3=0
(x+1)(x3)=0
x=1,3
y=(0)^2+2(0)+3
y=(0)+2(0)+3
y=0+0+3
y=3
x^2+2xf(x)=0
x^2*1+2x*1+3*f(x)*1=0*1
x^22x+f(x)3=0*1
x^22x+f(x)3=0
a=1 b=2 c= 1f(x)3
x=(2)¡À¡Ì((2)^24(1)(1fx)3)/(2(1))
x=2¡À2 ¡Ì(4f(x))/2
x=1+¡Ì(4f(x)
x=22¡Ì(4f(x))/2
x=1+¡Ì(4f(x), x=1¡Ì(4f(x)
(4f(x))<0
f(x)>4
=f(x)¡Ü 4 (¡Þ,4] range
domain= all real numbers

deja tienen el sexo en su casa y frotaré su vajina
you just have to translate it and you will see