Friday
April 18, 2014

Homework Help: Physics

Posted by Nho Neim on Friday, November 18, 2011 at 9:37pm.

A hoop of mass M = 3 kg and radius R = 0.5 m rolls without slipping down a hill, as shown in the figure. The lack of slipping means that when the center of mass of the hoop has speed v, the tangential speed of the hoop relative to the center of mass is also equal to vCM, since in that case the instantaneous speed is zero for the part of the hoop that is in contact with the ground (v − v = 0). Therefore, the angular speed of the rotating hoop is ω = vCM/R.


(a) The initial speed of the hoop is vi = 3 m/s, and the hill has a height h = 3.8 m. What is the speed vf at the bottom of the hill?

(b) Replace the hoop with a bicycle wheel whose rim has mass M = 3 kg and radius R = 0.5 m, and whose hub has mass m = 1.2 kg, as shown in the figure. The spokes have negligible mass. What would the bicycle wheel's speed be at the bottom of the hill? (Assume that the wheel has the same initial speed and start at the same height as the hoop in part (a)).

Answer this Question

First Name:
School Subject:
Answer:

Related Questions

Physics - A 190 kg hoop rolls along a horizontal floor so that the hoop's center...
physics' - A 100 kg hoop rolls along a horizontal floor so that the hoop's ...
physics - A mass M of 7.00E-1 kg slides inside a hoop of radius R=1.30 m with ...
Physics - A mass M of 5.80E-1 kg slides inside a hoop of radius R=1.50 m with ...
Physics - Four objects - a hoop, a solid cylinder, a solid sphere, and a thin, ...
Physics - A hoop starts from rest at a height 3.0 m above the base of an ...
Physics - 15. [1pt] A thin hoop of radius r = 0.59 m and mass M = 9.2 kg rolls ...
physics - What linear speed must a 0.0487-kg hula hoop have if its total kinetic...
physics - What linear speed must a 0.0495-kg hula hoop have if its total kinetic...
physics - From a height of 2.15 m above the floor of Boston's Fleet Center, ...

Search
Members