Post a New Question

physics

posted by on .

An electron of mass 9.11 10-31 kg has an initial speed of 3.00 105 m/s. It travels in a straight line, and its speed increases to 8.00 105 m/s in a distance of 10.0 cm.
(a) Assuming its acceleration is constant, determine the force exerted on the electron.
N (in the direction of motion)

(b) What is the ratio of this force to the weight of the electron, which we neglected?

  • physics - ,

    m = 9.11 * 10^-31
    vi = 3 * 10^5
    vf = 8 * 10^5

    vf = vi + a t

    d = Vi t + .5 a t^2

    10^-1 = 3*10^5 t + .5 a t^2
    or
    1 = 3*10^6 t + 5 a t^2
    but
    t = (8-3)10^5 /a
    so
    1 = 3*10^6 (5*10^5/a ) +5 (25*10^10/a)
    a = 15*10^11 + 12.5*10^11
    a = 27.5 * 10^11 kg
    F = ma = 9*10^-31*27.5*10^11
    = 247.5 * 10^-20
    = 2.475 * 10-22 N

    weight of electron = 9.81*9.11*10^-31
    so do ratio

  • physics - ,

    (a) Force * distance = kinetic energy increase
    Solve for the force.
    (b) Divide first answer by m*g, where m is the electron mass.

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question