Posted by Brianna on .
Create a rational function such that the graph of has vertical asymptotes at x=5 and x= 7, a hole at x=2 , and a horizontal asymptote at y = 14. By creating a rational function, you are to write rule for this function. There are many correct solutions here.

****college algebra…radical functions**** 
Steve,
You know that the denominator has to be zero at x=5 and x=7
The hole means that the numerator and denominator are both zero at x=2
so, we can start with
f(x) = (x2)/[(x2)(x5)(x+7)]
Now, we need a horizontal asymptote at y=14. That means that the numerator and denominator must have the same degree, x^n, with the highest degree having a coefficient in the numerator 14 times that in the denominator. So, the simplest one I can think of is
f(x) = 14x^2(x2)/[(x2)(x5)(x+7)]