Thursday
March 30, 2017

Post a New Question

Posted by on .

if F(x)=f(xf(xf(x))), where f(1)=2, f(2)=3, f'(1)=4, f'(2)=5, and f'(3)=6, find F'(1).

  • calculus - ,

    Here goes:

    F(x) = f(xf(xf(x)))
    F'(x) = f'(xf(xf(x))) * (xf(xf(x)))'
    = f'(1*f(1*f(1))) * (xf(xf(x)))'
    = f'(f(2)) * (xf(xf(x)))'
    = f'(3) * (xf(xf(x)))'
    = 6 * (xf(xf(x)))'
    = 6 * (f(xf(x)) + xf'(xf(x)))
    = 6 * (f(2) + xf'(2))
    = 6 * (3 + 5)
    = 6*8
    = 48

    Any other takers? Did I miss a step somewhere?

  • calculus - ,

    F(x) = f(xf(xf(x)))
    F'(x) = f'(xf(xf(x))) d/dx xf(xf(x))
    F'(x) = f'(xf(xf(x))) [ f(xf(x)) + xf'(xf(x)) d/dx xf(x) ]
    F'(x) = f'(xf(xf(x))) [ f(xf(x)) + xf'(xf(x)) [f(x) + xf'(x)] ]

    F'(1) = f'(1*f(1*f(1))) [ f(1*f(1)) + 1*f'(1*f(1)) [f(1) + 1*f'(1)] ]
    F'(1) = f'(f(f(1))) [ f(f(1)) + f'(f(1)) [f(1) + f'(1)] ]
    F'(1) = f'(f(2)) [ f(2) + f'(2) [2 + f'(1)] ]
    F'(1) = 6 [ 3 + 5 [2 + 4] ]
    F'(1) = 6 [ 3 + 5 *6 ]
    F'(1) = 6 [ 3 + 30 ]
    F'(1) = 6 [ 33 ]
    F'(1) = 196

  • calculus - ,

    F(x) = f(xf(xf(x)))
    F'(x) = f'(xf(xf(x))) d/dx xf(xf(x))
    F'(x) = f'(xf(xf(x))) [ f(xf(x)) + xf'(xf(x)) d/dx xf(x) ]
    F'(x) = f'(xf(xf(x))) [ f(xf(x)) + xf'(xf(x)) [f(x) + xf'(x)] ]

    F'(1) = f'(1*f(1*f(1))) [ f(1*f(1)) + 1*f'(1*f(1)) [f(1) + 1*f'(1)] ]
    F'(1) = f'(f(f(1))) [ f(f(1)) + f'(f(1)) [f(1) + f'(1)] ]
    F'(1) = f'(f(2)) [ f(2) + f'(2) [2 + f'(1)] ]
    F'(1) = 6 [ 3 + 5 [2 + 4] ]
    F'(1) = 6 [ 3 + 5 *6 ]
    F'(1) = 6 [ 3 + 30 ]
    F'(1) = 6 [ 33 ]
    F'(1) = 196

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question