Wednesday

October 1, 2014

October 1, 2014

Posted by **Angelina** on Monday, August 22, 2011 at 9:03am.

In solving the equation (x + 3)(x + 1) = 48, Eric stated that the solution would be

x + 3 = 48 => x = 45or (x + 1) = 48 => x = 47 However, at least one of these solutions fails to work when substituted back into the original equation. Why is that? Please help Eric to understand better; solve the problem yourself, and explain your reasoning.

- Math -
**bobpursley**, Monday, August 22, 2011 at 9:39amEric is applying the zero principle to a non zero quantity.

Zero Principle: if AB=0, then A,or B, or both is zero.

Silly nonsense : if AB=C, then A, or B, equals C

**Answer this Question**

**Related Questions**

math - In solving the equation (x + 4)(x – 7) = -18, Eric stated that the ...

Algebra - In solving the equation (x + 3)(x + 1) = 48, Eric stated that the ...

algebra - 1. In solving the equation (x + 3)(x + 1) = 48, Eric stated that the ...

algbera - In solving the equation (x + 3)(x + 1) = 48, Eric stated that the ...

intermediate algebra - In solving the equation (x-1)(x+2)=30. Eric stated that ...

algebra - in solving the equation (x +2)(x - 2) = 32 eric stated the solution to...

Math - In solving the eqaution(x+4)(x-4),Eric stated thatthe solution would be x...

Intermediate Algebra - solve equation (x+1)(x-2)=54 Eric stated that the ...

intermediate algebra - in solving the equation (x+4)(x-4)=9 eric stated the ...

algebra - solving the equation (x+4)(x-4)=9 Eric stated that the solution would ...