Posted by Isaac on Tuesday, August 9, 2011 at 11:25am.
A manufacturer constructs open boxes from sheets of cardboard that are 6 inches square by cutting small squares from the corners and folding up the sides. The Research and Development Department asks you to determine the size of the square that produces a box of greatest volume. Proceed as follows. Let x be the length of a side of the square to be cut and V be the volume of the resulting box. Show that V = x(62x)^2 (sketched it already.)
Are there any restrictions on the value of x? Explain.
Estimate the largest volume.

Calculus  Reiny, Tuesday, August 9, 2011 at 1:50pm
This is a continuation of the question I answered for you earlier.
Since you titled it "Calculus" you should be able to finish it.
1. expand and simplify the expression for V
2. differentiate, you will have a quadratic
3. solve that quadratic by setting it equal to zero for a max of V
4. sub the value you found in 3. into the original volume equation
for the restriction, all you have to do is look at the equation for V
V of course has to be positive.
so x > 0 and x < 3 or else the base side values make no sense.
restriction on x : 0 < x < 3

Calculus  Anonymous, Wednesday, August 31, 2016 at 4:17pm
hjbsxn
Answer This Question
Related Questions
 Calculus  A manufacturer constructs open boxes from sheets of cardboard that ...
 Calculus  A square sheet of cardboard with a side 16 inches is used to make an ...
 Calculus  A SHEET OF CARDBOARD 180 INCHES SQUARE IS USED to make an open box by...
 Math  A cardboard manufacturer wishes to make open boxes from square pieces of ...
 Calculas  an open box is to be made from a square piece of cardboard whose ...
 Calc  A cardboard box manufacturer makes open boxes from rectangular pieces of ...
 algebra  Opentop box. Thomas is going to make an opentop box by cutting equal...
 math  a rectangular sheet of cardboard 4m by 2m is used to make an open box by ...
 calculus  7. A cardboard box manufacturer wishes to make open boxes from ...
 Math Wrod Problem  1. A long strip of copper 8 inches wide is to be made into a...
More Related Questions