Geometry..
posted by Wendell on .
Given: A(3,1), B(5,2), C(2,0), P(3,4), Q(5,3), R(6,2).
Prove: angles ABC and RPQ are congruent by completing the paragraph proof.
AB=RP=13, BC=(?)=53, and CA=QR=26. So segment AB is congruent to (?), segments BC and PQ are congruent and segment CA is congruent to segment QR. Therefore triangle ABC is congruent to (?) by (?), and angles ABC and RPQ are congruent by (?).
AB = ã[(53)^2 + (2+1)^2] = ã(4+9) = ã13
RP = ã([3+6)^2 +(42)^2] = ã(9+4) = ã13
BC = ã[(5+2)^2 + (20)^2] = ã(49+4) = ã53
PQ = ã[3+5)^2 + (4+3)^2] = ã(4+49) = ã53
AC = ã[3+2)^2 + (10)^2] = ã(25+1) = ã26
RQ = ã[(6+5)^2 + (2+3)^2] = ã(1+25) = ã26
clearly we have corresponding pairs of sides equal, so by SSS, ∆ABC≅∆RPQ
I guess I don't understand how to write the answer.
Angle ABC is congruent to RPQ by____? and angles ABC and RPQ are congruent by _____?

Check your 72511,9:25am post.