Post a New Question


posted by on .

Given the following sets, select the statement below that is NOT true.
A = {b, l, a, z, e, r}, B = {b, a, l, e}, C = {a, b, l, e}, D = {l, a, b}, E = {a, b, l}
(Points : 2)
E ⊂ C
C ⊆ B
D ⊆ C
B ⊆ C
C ⊆ D

  • geometry - ,

    ⊂ means a proper subset.
    E⊂C means E is a proper subset of C, or "all elements of E are in C, AND E≠C".
    C = {a, b, l, e}, E = {a, b, l}
    Since a,b,l are in C, and E≠C, the statement is true.

    There is one statement where the number members of the subset exceeds that of the set, which is impossible.

    Can you find the statement?

Answer This Question

First Name:
School Subject:

Related Questions

More Related Questions

Post a New Question