Calculus
posted by Mai on .
Explain how you would use the power integration formula to integrate the function f(x) = (1/x^2)(1/x)+(1/4).

Integrate each of the three terms separately, using what you call the "power integration formula", and add up the results.
The formula you are probably refering to is:
Integral of (a*x^n) = a*n*x^(n+1)/(n+1)
where a is the constant coefficient and n is the constant exponent.
1/4 can be thought of as (1/4)*x^0, so its integral is (1/4)*x^1/1 = x/4
The integral of the 1/x term is a special case, since you cannot divide by zero. Its integral is the natural logarithm of x, ln x
Now integrate the 1/x^2 term and add the integral results of all three terms. You can add an arbitrary constant at the end if you wish.
The final answer is
1/x + ln x +x/4 + C 
How do you integrate a radical function such as f(x)= ã(7&4x^5 ) 3ã(6&x^5 ) 11∜x +3∛x ? Describe your strategy.