Posted by Abigail on .
The Crab pulsar (m=2.00x10^30 kg) is a neutron star located in the Crab Nebula. The rotation rate of the Crab pulsar is currently about 30.0 rotations per second, or 60.0pi rad/s. The rotation rate of the pulsar, however, is decreasing; each year, the rotation period increases by 1.00x10^5 s. Justify the following statement: The loss in rotational energy of the pulsar to 1.00*10^5 times the power output of the Sun. ( The total power radiated by the Sun is about 4.00*10^26 W.)
P/Ps=_________

Physics (please help!!) 
bobpursley,
rotational energy loss= 1/2 I (wi^2wf^2)
= 1/2 I (wi+wf)(wiwf)
now the moment of inertia for a solid sphere is 2/5 mr^2
= 1/2 * 2/5*2E30 * (wi*rwf*r)(wi*r+wi*r)
now period= 1/freq=1/30
so w=2PI/period
wi=2PI/30
wf=2PI/(301E5)
so, finally, (wi^2wf^2)=
= (2PI)^2 (1/30^2 1/(301E5)^2
= (2PI)^2 ( 90060E51E10 900)/(30^3*(301E5)^2
= appx (2PI)^2 ( 1/15 * 1E5)
then, power loss is appx
1/5 *2E30*(2PI)^2 (1/15 E5)
= 2.6E24
so recheck my work.