Physics
posted by Anonymous on .
The moment of inertia of a solid uniform sphere of mass M and radius R is given by the equation I=(2/5)MR2 . Such a sphere is released from rest at the top of an inclined plane of height h, length L, and incline angle รจ. If the sphere rolls down the plane, find its speed at the bottom of the incline.

Do this from an energy perspective. The KE at the bottom (rolling and translational) is equal to the potential energy lost.
PE=ke
m*L*sinTheta*g=1/2 m v^2 + 1/2 I w^2
where w=v/r
so put in your function for I, and w, and solve for v 
thanks! i got 7/10 squared! (2/5)mr squared (v/r)squared=mvsquared (1/2 +1/ =7/10