Tuesday
March 28, 2017

Post a New Question

Posted by on .

The figure below (a) shows a sphere with a radius of r = 157 mm (density ñ = 1.24 g/cm³) suspended in water by a string. The ball is completely submerged in the water and the string is attached from the bottom of the water tank to the bottom of the sphere. What is the tension in the string?

i know that after doing the freebody diagram that it is F-W-T=0 since the sphere is not moving. So T=Fbuoyant-W
--> (density of fluid-density of sphere)gravity*volume of object?

  • PHYSICS URGENT DUE IN 15 MINUTES - ,

    Something doesn't make sense to me here. With a density of 1.24 g/cm^3, the weight of the sphere is greater than the buoyancy force. It should sink to the bottom of the tank. What good is a string at the bottom of the tank?

    Your equations are correct.

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question