Post a New Question

math

posted by .

integration of
cot^4(1-2x)dx

  • math -

    |cot^4(1-2x) dx =
    = |cot^2(1-2x)*cot^2(1-2x) dx
    = |{cosec^2(1-2x) - 1}*cot^2(1-2x) dx
    = |cosec^2(1-2x)*cot^2(1-2x) dx - |cot^2(1-2x) dx
    = |cosec^2(1-2x)*cot^2(1-2x) d(cot(1-2x))/(-cosec^2(1-2x)*(-2)) - |{cosec^2(1-2x) - 1} dx
    = (1/2)|cot^2(1-2x) d(cot(1-2x)) - |cosec^2(1-2x) dx + |dx
    = (1/6)cot^3(1-2x) - (1/2)cot(1-2x) + x + const

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question