Post a New Question


posted by .

One of the new events in the 2002 Winter Olympics was the sport of skeleton (see the photo). Starting at the top of a steep, icy track, a rider jumps onto a sled (known as a skeleton) and proceeds - belly down and head first - to slide down the track. The track has fifteen turns and drops 104 m in elevation from top to bottom. (a) In the absense of non-conservative forces, such as friction and air resistance, what would be the speed of a rider at the bottom of the track? Assume that the speed of the rider at the beginning of the run is relatively small and can be ignored. (b) In reality, the best riders reach the bottom with a speed of 35.8 m/s (about 80 mi/h). How much work is done on an 82.0-kg rider and skeleton by non-conservative forces?

  • Physics! -

    Someone will be glad to critique your work. This is not a homework dumping ground.

Answer This Question

First Name:
School Subject:

Related Questions

More Related Questions

Post a New Question