Calculus
posted by Janet on .
The problem is lim > 2 for g(x) which is 2((x2/(squareroot x)2)) I just substituted 2 in for x and 2((22)/(squareroot 2)2) = 0 This doesn't look right. It seems like I'd need to try something different.
Can someone tell me if it's right or wrong? And if there's a different approach?

you are correct if that orig is correct.
are you certain the denominator is not
sqrt(x2) That makes it a calculus problem. 
No it only has the sqrt x. The 2 is outside of the sqrt.
Just so I know. Had it all been under the square root would I have multiplied the top and the bottom by that sqrt(x2)? 
I recall seeing this question posted several times and both MathMate and I both answered it.
I was going for a "search" to find solutions but was not successful.
I agree with bobpursley that there might be a typo here.
I used to teach basic limits this way:
Sub in the approach value into the expression
If you get:
1. a real value, then write down that value. You are done! next question!
2. if you get a/0, where a≠0, then the limit is unefined, or there is no limit
3. If you get 0/0, then you have a real Calculus limit question. Try factoring, rationalizing or some other fancy tricks you can think of.
in your case , sub in x = 2
expresssion = 2(0)/(√2  2) = 0/.586 = 0
all done!
However, check your typing and make sure your brackets are in the right place. 
the first 2 is centered on the division line which has x2/(sqrt2)2.
I think I placed the brackets right??