# Trig

posted by
**Anon** on
.

Hi everyone, I have a WS due tomorrow, and would really appreciate some help.

You are taking a ride on a Ferris wheel that is 100 feet in diameter and has a bottom point that is 10 feet above the ground. Suppose that the wheel rotates four times every minute and from your friend's viewpoint on the ground, it is rotating in a clockwise direction.

1. Sketch your height y above the ground as it depends on the horizontal distance x from a vertical axis through center of the Ferris wheel.

2. Sketch your height y above the ground as a function of time t.

3. Find a formula for your height y as a function of t.

4. Sketch your horizontal distance x as a function of time t.

5. Find a formula for the horizontal distance x as a function of time t.

6. Find all intervals of time for which you are moving forward. Indicate these intervals on the graph in number 2.

7. Suppose your friends moves around the opposite side of the wheel so now it appears to him to be moving counter clockwise. From this new vantage point, how do your answers to number 6 change?

8. Find a formula relating your height y above the ground and horizontal distance x from the vertical axis through the center of the wheel.

I started by making a graph of the time (3.75, 7.5,11.25, and 15) for each rotation, the horiz distance from the y axis (don't know how to find) and the height (50,100,50,0). Any tips or solutions would be very much appreciated. Thanks