Saturday

April 19, 2014

April 19, 2014

Posted by **Jon** on Wednesday, January 12, 2011 at 5:02pm.

I did the exact same question as this only with numbers and got the right answer subbing my numbers into

A=mu(coefficient of static friction*g/w^2

So, i thought the answer would be

A=(mu*g*m)/k

But I was told that the correct answer does not depend on mu (the coefficient of static friction). So I'm guessing it must get cancelled out of the equation? I'm confused because I needed it in the first question when I actually subbed numbers in?

- Physics -
**bobpursley**, Wednesday, January 12, 2011 at 5:34pmWell, I can tell you the coefficent of friction does enter into the answer. Consider nofriction between the blocks, than any acceleration will make the top block slip. If the coefficent is infinite, as you nailed the two blocks together, then you could have a very large acceleration and they wouldn't slip.

My concern here is what does Mu*s mean? does that mean the static coefficent of friction? If so, I stick with my above answer. If it means the static coefficent times some value s, then I need to know what s is.

Let look at it.

x= Asinwt

v= Aw coswt

a= -A w^2 sinwt

So the max occurs at sinwt=1, or max acceleration is Aw^2

Now, the max force on the top block is mu*mg, so acceleration <mu*mg/m

acceleration<mu*g

or Aw^2<mu*g

but w is... sqrt (k/(M+m)

Ak/2M<mu*g

or A<mu*g*(M+m)/k

m is the mass of the top box, M the bottom.

**Related Questions**

physics - In Figure (a), a block of mass m lies on a horizontal frictionless ...

Physics - A 0.500 kg block is sitting on a horizontal, frictionless surface. The...

Physics - A 0.500 kg block is sitting on a horizontal, frictionless surface. The...

Physics - A block of mass M=6 kg and initial velocity v=0.8m/s slides on a ...

Physics - Block A of mass 2.0 kg and Block B of 8.0 kg are connected by a spring...

physics - A physics student pulls a block of mass m = 23 kg up an incline at a ...

PHYSICS - A block of mass m lies on a horizontal frictionless surface and is ...

Physics - A 0.490-kg block is attached to a horizontal spring that is at its ...

Physics - An ideal massless spring is fixed to the wall at one end. A block of ...

Physics - A 0.409 kg block is attached to a horizontal spring that is at its ...