Sunday

December 21, 2014

December 21, 2014

Posted by **Anonymous** on Thursday, December 9, 2010 at 1:10pm.

x=0, \ x=1, \ y=0, \ y= 8 +x^{2}

about the x-axis.

- Calculus -
**MathMate**, Thursday, December 9, 2010 at 5:45pmThe solid will be rotated about the x-axis, so we can apply the disk method by which vertical slices of thickness dx are integrated.

Radius of each slice

= y(x)

Volume of each slice

= πr²dx

= πy(x)²dx

Total volume can be obtained by integrating from x=0 to 1

V=∫ πy(x)²dx

=∫ π (8+x²)² dx

=∫ π (64+16x+x²)dx

=π [64x + 8x² + x³/3] x=0 to 1

=π[64+8+1/3]

=217π/3

Check my work.

**Answer this Question**

**Related Questions**

Calculus - This problem set is ridiculously hard. I know how to find the volume ...

calculus edit - 1. Find the volume formed by rotating the region enclosed by x=...

Calculus - 1. Find the volume formed by rotating the region enclosed by x=5y and...

Calculus - a) Find the volume formed by rotating the region enclosed by x = 6y ...

calculus - Find the volume of the solid formed by rotating the region enclosed ...

calculus - Find the volume of the solid formed by rotating the region enclosed ...

calculus - Find the volume of the solid formed by rotating the region enclosed ...

Calculus :) - Find the volume of the solid formed by rotating the region ...

CALCULUS:) - Find the volume of the solid formed by rotating the region enclosed...

Calculus II - Find the volume of the solid formed by rotating the region ...