Post a New Question


posted by .

a sailor out in a lake sees two likght houses 11km apart along the shore and gets bearings of 285degrees from his present position for light house A and 237degrees for light house B. From light house B, light house A has a bearing of 45degrees. How far to the nearest kilometre, is the sailor from each light house? What is the shortest distance, the nearest kilometre, from the sailor to the shore? ( the answers are 3km, 13km, 3km)

  • Trig -

    The hardest part is drawing the diagram.
    I have AB at 45° and length 11
    point S (for sailor) is to the right, slightly below A so that angle ASB = 48°.
    angle B = 12° and angle A = 120°

    ( I got this by drawing NS-EW lines at A, at B and at S, then using your bearings and properties of parallel lines)

    so we have a/sin12 = 11/sin48
    a = 3.08
    b/sin120 = 11/sin48
    b = 12.82

    for the shortest distance to the shore we have to assume the the shore continues along the line of AB.
    We have a nice right-angled triangle where
    sin 60 = x/3.08
    x = 2.67

    your answers are clearly rounded off

Answer This Question

First Name:
School Subject:

Related Questions

More Related Questions

Post a New Question