physics
posted by Anonymous on .
A bullet with mass m and a velocity of v is shot perpendicular to the edge of a uniform rod with length L and mass 4m which is free to move and rotate on a frictionless horizontal surface. The bullet is lodged into the rod and move together after the collision. a) Calculate the linear velocity of the center of mass of the system (rodbullet) after the collision. b) Find the position (on the rod) of center of mass of the system (rodbullet) after the collision. c) Find the moment of inertia of the system around the axis through the center of mass. d) Calculate the angular velocity ω of the system after the collision. (The moment of inertia of a uniform rod about its center of mass is mL2/12.)

we will be happy to critique your thinking.