Posted by **inez** on Friday, May 7, 2010 at 12:25am.

A certain country's population P(t), in millions, t years after 1980 can be approximated by P(t) = 2.495(1.019)^t. Find the doubling time.

- algebra -
**Reiny**, Friday, May 7, 2010 at 1:06am
solve

4.990 = 2.495(1.09)^t

2 = 1.09^t

log 2 = tlog1.09

t = log2/log1.09 = 8.043

- algebra -
**inez**, Friday, May 7, 2010 at 2:04am
48,6 yr

58.4 yr

36.8 yr

or

73.7 yr

- algebra -
**Reiny**, Friday, May 7, 2010 at 8:12am
I should really have my eyes checked soon, lol

I saw 1.09 instead of 1.019

so last line

t = log2 / log 1.019 = 36.8 years

## Answer This Question

## Related Questions

- Calculus - The population of a region is growing exponentially. There were 40 ...
- math - The population of a certain country grows according to the formula N=N0e^...
- Math - Solve. The population of a particular country was 29 million in 1980; in ...
- Algebra - Complete the following table Growth rate is k, Doubling time is T ...
- math - In 1980, the population of a certain country was about 161 000. since ...
- Algebra - The population of Australia in x years after 1980 can be modeled by ...
- algebra - I have no clue where to begin on this problem. Can some one help me ...
- algebra - The population of a particular country was 29 million in 1985; in ...
- Science!! Please HELP - If a population consists of 10,000 individuals at time t...
- Math - Suppose human activity has caused a 0.1 Fahrenheit increase in global ...

More Related Questions