Post a New Question


posted by .

Infinitely many different sectors can be cut from a circular piece of paper with a 12-cm radius, and any such sector can be fashioned into a paper cone with a 12-cm slant height.
(a) Show that the volume of the cone produced by the 180-degree sector is larger than the volume of the cone produced by the 120-degree sector.
(b) Find a sector of the same circle that will produce a cone whose volume is even larger.
(c) Express the volume of a cone formed from this circle as a function of the central angle of the sector used to form it, then find the sector that produces the cone of greatest volume.

Answer This Question

First Name:
School Subject:

Related Questions

More Related Questions

Post a New Question