math (calculus) PLZZZ help!
posted by Anonymous on .
Consider the function below. (Round the answers to two decimal places. If you need to use  or , enter INFINITY or INFINITY.)
f(x) = e^x/1+e^x
find the horizontal and vertical assymptotes?
find the interval whr f is increasing?
Find the inflection point.
Find the interval where the function is concave up.
Find the interval where the function is concave down.

to have a vertical asymptote, 1 + e^x has to be zero, or
e^x = 1
No value of x makes that statement true, so there is no vertical asymptote.
for x >∞ , f(x) approaches 1
for x > ∞, f(x) approaches 0
so for large +x's, the horizontal asymptote is y = 1
for large x's the horizontal asymptote is y = 0
f'(x) = [(1+e^x)(e^x)  e^x(e^x)]/(1+e^x)^2
= e^x(1 + 2e^x)/(1+e^x)^2
This will always be positive for any value of x, so the function is increasing for all values of x 
so would the inflection points be (0,1)?