Posted by Judy and group on .
16To test the hypothesis H0 : ì = 100 against H1 : ì > 100, a statistics practioner randomly sampled T
observations and found the mean x = 106 and the standard deviation sx = 35. The value of the test
statistic is equal to
(1) 1.1743
(2) −1.7143
(3) 0.1714
(4) 17.143
(5) 1.7143
ANSWER:1
18Suppose we want to test the null hypothesis H0 : ì = 400 against H1 :ì < 400. The test statistic is
calcuated as −1.23 and the twotailed critical value is 1.96. The appopriate p–value will be
(1) −0.0500
(2) 0.3907
(3) 0.1093
(4) 0.8907
(5) −0.1093
ANSWER: 3
19 Determine the p–value associated with the values of the standardized test statistic z = 1.05 for onetail
test.
(1) 0.3531
(2) 0.1469
(3) 0.8531
(4) 0.0146
(5) 0.2938
ANSWER: 3
20Using the confidence interval when conducting a twotail test for the population mean, we do not reject
the null hypothesis if the hypothesized value:
(1) is to the left of the lower confidence limit
(2) is to the right of the upper confidence limit
(3) falls between the lower and upper confidence limits
(4) falls in the rejection region
(5) all the above statements are correct
ANSWER: 3

STATS (PLEASE CHECK) 
PsyDAG,
16. Your fail to indicate your sample size to determine the standard error of the mean. SE = SD/√(n1) is needed to determine the significance of difference between means.
However, it seems like the alternatives are using the SD rather than SE. Then Z = (x  μ)/SD =
(106100)/35 = 6/35 = .1714
18. Your H1 indicates a onetailed test, but you are using a twotailed critical value. I'm not sure what you are looking for with the "pvalue." If this is probability of Alpha error, then .1093 is correct.
19. I'm not sure what you are looking for with the "pvalue." If this is probability of Alpha error, then .1469 is correct.
20. Correct