Posted by **Ren** on Thursday, March 25, 2010 at 4:36pm.

How do I find the value of d^2y/dx^2 for the function defined implicitly by xy^2 + y = 2 at the point (1,-2)?

- Math - Implict differentiation -
**bobpursley**, Thursday, March 25, 2010 at 5:48pm
xy^2+y=2

y^2 dx + 2xy dy+dy=0

dy/dx ( 2xy+1)=y^2

dy/dx= y^2(1/(2xy+1)

dy"/dx"= 2y/(2xy+1) -y^2/(2xy+1)^2 * (2y*xdy/dx+2y)

Put for dy/dx y^2/(2xy+1)

then put number (1,-2)

CHECK MY WORK, I have a headache (Elm pollen).

## Answer This Question

## Related Questions

- AP Calculus - Consider a curve given implicitly by the equation (1+x)y^3 + (x^4)...
- calc - let y be the function of x defined implicitly by the equation x^2 -2xy +...
- Calculus 1 Implicit differentiation - Help please help me understand what i am ...
- calculus - Suppose y is defined implicitly as a function of x by x^2+Axy^2+By^3=...
- PLIZ VERY URGENT - Use implicit differentiation to show that a function defined ...
- Calculus - A function is implicitly defined by x^2 - 4y^2 = 9 Find the equation ...
- AP calculus - Find (dy/dx) for the following implicitly defined function: 2x = ...
- Calculus - Find the derivative of the function y defined implicitly in terms of ...
- Calculus - Find the derivative of the function y defined implicitly in terms of ...
- calculus - suppose a price-demand function p(x) is defined implicitly by x= p^3-...

More Related Questions