Post a New Question


posted by .

A tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.24 m/s on a horizontal section of a track. It rolls around the inside of a vertical circular loop 90.0 cm in diameter and finally leaves the track at a point 19.0 cm below the horizontal section.
(a) Find the speed of the ball at the top of the loop.

(b) Find its speed as it leaves the track.

I tried using energy conservation but I keep getting the wrong answer

  • physics -

    Did you include the rotational kinetic energy along with the translational kinetic energy?

    Total KE = (1/2) M V^2 + (1/2) I w^2
    = (1/2) M V^2 + (1/2)(2/3)M R^2*(V/R)^2
    = (5/6) M V^2

    (a) Solve (5/6) M [V1^2 - V2^2] = M g H
    Solve for V2 at the top. (H = 0.9 m)
    M cancels out

    (b) I don't understand how the ball can be below the below the horizontal section. I thought the loop was above the track.

Answer This Question

First Name:
School Subject:

Related Questions

More Related Questions

Post a New Question