college Math
posted by Michelle on .
A recent article in a computer magazine suggested that the mean time to fully learn a new software program is 40 hours. A sample of 100 first time users of a new statistics program revealed the mean time to learn it was 39 hours with the standard deviation of 5 hours. At the 0.05 significance level, can we conclude that users learn the package in less than a mean of 40 hours?
a. State the null and alternate hypotheses.
Ho:
H1:
b. State the decision rule.
c. Compute the value of the test statistic.
d. Compute the pvalue.
e. What is your decision regarding the null hypothesis? Interpret the result.

Ho: µ = 40 >meaning the population mean is equal to 40.
H1: µ < 40 > meaning the population mean is less than 40.
This will be a onetailed test because the alternative hypothesis is showing a specific direction.
Use a ztest. Find the significance level for a onetailed test using a ztable. Compare the test statistic from the ztest to the value from the ztable. If the test statistic exceeds the value in the table, then reject the null and conclude µ < 40. The pvalue is the actual level of the test statistic found using a ztable.
Here is a ztest formula to get you started:
z = (sample mean  population mean)/(standard deviation divided by the square root of the sample size)
Sample mean = 39
Population mean = 40
Standard deviation = 5
Sample size = 100
Fill the values into the formula and compute the test statistic.
I'll let you take it from here.
I hope this will help get you started. 
Z<1.25)=(1.1056)=0.8944
Pvalue of 0.894<0.05
Reject?